Tetrahedron Letters No. 44, pp 3861 - 3864, 1977. Pergamon Press. Printed in Great Britain.

THE COUPLING OF ACID CHLORIDES BY ENNEACARBONYLDIIRON AND BY

NICKEL CARBONYL COMPLEXES. PREPARATION OF SYMMETRICAL PRIMARY ALKYL KETONES.

Thomas C. Flood* and Ahmad Sarhangi Department of Chemistry University of Southern California Los Angeles, California 90007

(Received in USA 22 July 1977; received in UK for publication 16 September 1977)

Metal carbonyls and their anions have been found to be reactive with a variety of organic substrates.¹ In seeking a mild conversion of acid chlorides to aldehydes, without the inconvenient necessity of having to first reduce the metal carbonyl, we submitted octanoyl chloride (1) to reaction with Fe₂(CO)_g (2) as shown in equation 1. Treatment with CF₃CO₂H

$$
\underline{n}^{-C}7^{H}15^{C-C1 + Fe_2(CO)}9 \xrightarrow{1. Et_2O, ref1ux 12 hr} \underline{n}^{-C}7^{H}15^{CH} + \underline{n}^{-C}7^{H}15^{C-H}15^{C}
$$
\n
$$
\underline{1}
$$
\n
$$
\underline{2}
$$
\n
$$
48
$$
\n(1)

after reaction yielded very little aldehyde, while concurrent treatment with $CF₃CO₂H$ yielded 20% (experiment 1, Table). Most notable was the formation of significant amounts of di-n-heptylketone in both cases. We have found that reaction of α -mono-substituted acetyl chlorides with 2 (in absence of acid) is a mild, general means of preparing symmetrical ketones in fair-togood yields. In a typical reaction, the acid chloride is heated at reflux with 2^2 in ether overnight, the mixture is filtered, the solvent evaporated, and the product is purified by conventional techniques. Hexane and Fe(CO)₅ were usable as solvents (experiments $3 - 5$) but resulted in diminished yields. In THF as solvent at 25°, the major product from <u>l</u> was n-C₇H₁₅CO- (CH_2) ₄Cl (experiment 6).⁴ Only a slight decrease in yield was observed in changing the RCOCl:z molar ratio from 1:l to 2rl (experiments 2, 7), but the standard conditions for examining substrate variation were taken to be $Et₂0$ solvent at reflux, 12 hours, and a 1:1 molar ratio of RCOC1:2.

The reaction conditions were tolerant of the ester group in $CH_3O_2C(CH_2)$ ₃-COCl (experiment 13), and of the ether in p -MeOC₆H₄CH₂COCl (experiment 11). Reaction of CH₂=CH(CH₂) gCOCl with 2 yielded [CH₃CH=CH(CH₂)₇]₂CO as the only

 $\tilde{}$ Conditions, unless otherwise noted: \mathtt{Et}_2 0 solvent at reflux for 12 hr, under nitrogen atmosphere. ^bRatio = acid chloride:metallic reagent. ^CHexane solvent reflux, 1 hr. ~Hexane solvent, 25°, 12 hr. $\mathtt{f}_{\boldsymbol{\mathsf{m}}}$ [~]Fe(CO)₅ solvent, 35**°,** 12 hr. THF solvent, 25°, 12 hr. 9 Four hr. h The only isomer detectable by NMR.

positional isomer (experiment 14). Iron carbonyls are well-known olefin isomerization catalysts, ⁵ but the selectivity of the isomerization in this last case is noteworthy. Aromatic nitro compounds are known to be reduced by iron carbonyls, 6 so that as anticipated no isolable product could be obtained from the reaction of 2 with $p-NO_2C_6H_4CH_2COCl$. Aliphatic bromides are similarly labile since Br(CH₂)₅COCl yielded only a complex reaction mixture.

The scope of this reaction is limited to α -mono-substituted acetyl chlor-

No. 44

ides (no ketone could be isolated from reaction of 2 with C_6H_5COCl , $c-C_6H_{11}COCl$ t-BuCOCl, CH₃CH=CHCOCl, or CH₃CHBrCOCl) and to mono acid chlorides (ClOC(CH₂)_n-COCl, n = 4, 7, 8, 11, and 14, and o -ClOCC₆H_ACH₂COCl all failed to cyclize). As anticipated, when 2 was submitted to reaction with an equimolar ratio of 1 and p -CH₃OC₆H₄CH₂COC1, the three possible products were formed all in low yield (experiment 15).

The choice of metallic reagent is not incidental since Fe(CO)₅ (hv or Δ),⁷ $Fe_3(CO)_{12}$, Co₂(CO)₈, Fe₂(CO)₇(µ-(PPh₂)₂CH₂) (3), and Fe(CO)₃(µ-PMe₂)₂Fe(CO)₃ (4) do not yield any ketone products in reaction with 1. However, $\overline{N_1}$ (CO)₂(PPh₃)₂ (5) did afford diheptyl ketone⁷ in moderate yield (experiment 7). It is interesting to speculate that 2 causes coupling via interaction of two equivalents of acid chloride with the dimeric reagent. If one believes that both RCOCl equivalents are activated by oxidative addition to iron, then either a transient Fe(IV) must be postulated, or two atoms of iron are involved. Experiment 8 wherein (n^2 -styrene)Fe(CO)₄ was used in place of 2 is ambiguous in this regard since the path of equation 2 or 3 might obtain. The insolubility of 2 and the lack of reactivity of the more soluble dimers 3 and 4 have precluded detailed mechanistic studies.

$$
(CO)_{4}Fe-\n\begin{array}{c}\n\text{Ph} \\
\uparrow \\
\uparrow\n\end{array}\n\text{R}\n\text{
$$

 $\begin{array}{ccc}\n0 & 0 & 0 \\
\uparrow & \parallel & \parallel \\
2 & \text{RCE}(\text{CO}) \, {}_{4}\text{Cl} \longrightarrow (\text{RC}) \, {}_{2}\text{Fe}(\text{CO}) \, {}_{4} + \text{Fe}(\text{CO}) \, {}_{4}\text{Cl}_{2} & 0\n\end{array}$ (3)

The fact that nickel(0) effects the dimerization of acid chlorides is not unreasonable for a mononuclear species, since oxidative addition of one equivalent of RCOCl would yield NiL₂Cl(COR), or perhaps NiL₂(COR)₂ by metathesis, and addition of "oxidizing" agents such as alkyl, aryl, or acyl halides to such species is known to induce coupling reactions. 8 Preliminary results indicate that Ni(0) complexes may have a wider scope in this reaction than does 2, and this is being further investigated.

Acknowledgement. This work was supported in part by the National Science Foundation Grant CHE 75-1344.

Notes and References

1. I. Wender and P. Pino, Eds., "Organic Synthesis via Metal Carbonyls," Vol. 1, Interscience, New York, N.Y., 1968; R.F. Heck, "Organotransition Metal Chemistry," Academic Press, New York, N.Y., 1974; A.P. Kozikowski and H.F. Wetter, Synthesis, 561 (1976); J.P. Collman, Acc. Chem. Res., g 342 (1975).

- 2. Fe₂(CO)₉ is readily prepared from the relatively inexpensive Fe(CO)₅; J.J. Eisch and R.B. King, "Organometallic Synthesis," Vol. 1, Academic Press, New York, N.Y., 1965, p. 93.
- 3. Fe(CO)₅ appears to be the only solvent known in which Fe₂(CO)₉ is soluble without reaction. This solubility had no beneficial effect on the yield.
- 4. This type of product was also observed from the reaction of Fe(CO)₅ with ethers and acid chlorides [H. Alper and J.T. Edward, Can. J. Chem., 18, 1623 (1970)], and is a common reactin catalyzed by a variety of Lewis acids [M.E. Synerholm, Org. Syn., Col. Vol. III, E.C. Horning, Ed., Wiley, New York, N.Y., 1955, p. 187.1
- 5. C.W. Bird, "Transition Metal Intermediates in Organic Synthesis," Academic Press, New York, N.Y., 1966, p. 69 ff.
- 6. J.M. Landesberg, I. Katz, and C. Olsen, <u>J. Org. Chem., 37</u>, 930 (1972); H. Abbayes and H. Alper, J. Am. Chem. Soc., 99, 98 (1977).
- 7. Reaction of CH₃COC1 with Fe(CO)₅ at 180° in a sealed steel tube is reported to yield biacetyl in 87% yield; A.S. Filatov and M.A. Englin, J. Gen. Chem. U.S.S.R., 39 , 502 (1969). Similarly, CH₃COC1 and Ni(CO)₄ yield biacetyl; H. Reihlen, A. Gruhl, and G. Hessling, Ann., 472, 268 (1929).
- 8. S. Takahashi, Y. Suzuki, K. Sonogashira, and N. Hagihara, J. Chem. **SOC.** Chem. Commun., 839 (1976).