Tetrahedron Letters No. 44, pp 3861 - 3864, 1977. Pergamon Press. Printed in Great Britain.

THE COUPLING OF ACID CHLORIDES BY ENNEACARBONYLDIIRON AND BY

NICKEL CARBONYL COMPLEXES. PREPARATION OF SYMMETRICAL PRIMARY ALKYL KETONES.

Thomas C. Flood* and Ahmad Sarhangi Department of Chemistry University of Southern California Los Angeles, California 90007

(Received in USA 22 July 1977; received in UK for publication 16 September 1977)

Metal carbonyls and their anions have been found to be reactive with a variety of organic substrates.¹ In seeking a mild conversion of acid chlorides to aldehydes, without the inconvenient necessity of having to first reduce the metal carbonyl, we submitted octanoyl chloride (<u>1</u>) to reaction with Fe₂(CO)₉ (<u>2</u>) as shown in equation 1. Treatment with CF₃CO₂H

$$\underline{n} - C_7 H_{15} C - C1 + Fe_2 (CO)_9 \xrightarrow{1. Et_2 O, reflux 12 hr}{2. 2 equiv CF_3 CO_2 H} = \underline{n} - C_7 H_{15} CH + \underline{n} - C_7 H_{15} C - \underline{n} - C_7 H_{15} (1)$$

$$\underline{1} \qquad \underline{2} \qquad \qquad 4\% \qquad 54\%$$

after reaction yielded very little aldehyde, while concurrent treatment with CF_3CO_2H yielded 20% (experiment 1, Table). Most notable was the formation of significant amounts of di-<u>n</u>-heptylketone in both cases. We have found that reaction of α -mono-substituted acetyl chlorides with <u>2</u> (in absence of acid) is a mild, general means of preparing symmetrical ketones in fair-to-good yields. In a typical reaction, the acid chloride is heated at reflux with 2^2 in ether overnight, the mixture is filtered, the solvent evaporated, and the product is purified by conventional techniques. Hexane and Fe(CO)₅³ were usable as solvents (experiments 3 - 5) but resulted in diminished O yields. In THF as solvent at 25°, the major product from <u>1</u> was $\underline{n}-C_7H_{15}CO-(CH_2)_4Cl$ (experiment 6).⁴ Only a slight decrease in yield was observed in changing the RCOCl:<u>2</u> molar ratio from 1:1 to 2:1 (experiments 2, 7), but the standard conditions for examining substrate variation were taken to be Et₂O solvent at reflux, 12 hours, and a 1:1 molar ratio of RCOCl:<u>2</u>.

The reaction conditions were tolerant of the ester group in $CH_3O_2C(CH_2)_3$ -COCl (experiment 13), and of the ether in p-MeOC₆H₄CH₂COCl (experiment 11). Reaction of $CH_2=CH(CH_2)_8$ COCl with <u>2</u> yielded [CH₃CH=CH(CH₂)₇]₂CO as the only

		TABLE a			
Expt	Substrate	Reagent	Reactan ^b Ratio ^b	tProducts %	Yield
1	сн ₃ (сн ₂) ₆ сос1	Fe ₂ (CO) ₉	1:1:1	сн ₃ (сн ₂) ₆ сно	20
		+ CF ₃ CO ₂ H		+[CH ₃ (CH ₂) ₆] ₂ CO	18
2	CH ₃ (CH ₂) 6COC1	Fe ₂ (CO) ₉	1:1	[CH ₃ (CH ₂) ₆] ₂ CO	71
3	11	H	"c		24
4	n	17	"a	n	26
5	n	**	"e	n	46
6	"	n	"f	N	13
7	"	u	2:1	11	62
8	n	$Ni(CO)_2(PPh_3)_2$	2:1	n	40
9	tt	$(\eta^2 - PhCH = CH_2) Fe(CO)_4$	1:1	n	62
10	PhCH2COC1	Fe ₂ (CO) ₉	1:1 ^g	[PhCH ₂] ₂ CO	33
11	p-MeOC6H4CH2COC1	n	13	[p-MeOC ₆ H ₄ CH ₂] ₂ CO	59
12	сн ₃ сн (рһ) сн ₂ сос1	n	**	[CH ₃ CH (Ph) CH ₂] ₂ CO	38
13	сн ₃ 0 ₂ с(сн ₂) ₃ сос1	11	n	[CH ₃ 0 ₂ C(CH ₂) ₃] ₂ CO	24
14	CH2=CH(CH2)8COC1	"	"	[CH ₃ CH=CH(CH ₂) ₇] ₂ co ^h	40
15	p-MeOC ₆ H ₄ CH ₂ COC1	Π	1:1:2	[p-MeOC ₆ H ₄ CH ₂] ₂ CO	18
	+ CH ₃ (CH ₂) ₆ COC	1 "	+ 0	CH ₃ (CH ₂) ₆ COCH ₂ C ₆ H ₄ <u>P</u> OMe	20
				+ [CH ₃ (CH ₂) ₆] ₂ CO	13

^aConditions, unless otherwise noted: Et₂0 solvent at reflux for 12 hr, under nitrogen atmosphere. ^bRatio = acid chloride:metallic reagent. ^CHexane solvent reflux, 1 hr. ^dHexane solvent, 25°, 12 hr. ^eFe(CO)₅ solvent, 35°, 12 hr. ^fTHF solvent, 25°, 12 hr. ^gFour hr. ^hThe only isomer detectable by NMR.

positional isomer (experiment 14). Iron carbonyls are well-known olefin isomerization catalysts, ⁵ but the selectivity of the isomerization in this last case is noteworthy. Aromatic nitro compounds are known to be reduced by iron carbonyls, ⁶ so that as anticipated no isolable product could be obtained from the reaction of 2 with $p-No_2C_6H_4CH_2COCI$. Aliphatic bromides are similarly labile since $Br(CH_2)_5COCI$ yielded only a complex reaction mixture.

The scope of this reaction is limited to α -mono-substituted acetyl chlor-

No. 44

ides (no ketone could be isolated from reaction of 2 with C_6H_5COCl , $c-C_6H_{11}COCl$ <u>t</u>-BuCOCl, $CH_3CH=CHCOCl$, or $CH_3CHBrCOCl$) and to mono acid chlorides (ClOC(CH_2)_n-COCl, n = 4, 7, 8, 11, and 14, and <u>o</u>-ClOCC₆H₄CH₂COCl all failed to cyclize). As anticipated, when <u>2</u> was submitted to reaction with an equimolar ratio of <u>1</u> and <u>p</u>-CH₃OC₆H₄CH₂COCl, the three possible products were formed all in low yield (experiment 15).

The choice of metallic reagent is not incidental since $Fe(CO)_5$ (hv or Δ),⁷ $Fe_3(CO)_{12}$, $Co_2(CO)_8$, $Fe_2(CO)_7(\mu-(PPh_2)_2CH_2)$ (3), and $Fe(CO)_3(\mu-PMe_2)_2Fe(CO)_3$ (4) do not yield any ketone products in reaction with 1. However, $Ni(CO)_2(PPh_3)_2$ (5) did afford diheptyl ketone⁷ in moderate yield (experiment 7). It is interesting to speculate that 2 causes coupling via interaction of two equivalents of acid chloride with the dimeric reagent. If one believes that both RCOCl equivalents are activated by oxidative addition to iron, then either a transient Fe(IV) must be postulated, or two atoms of iron are involved. Experiment 8 wherein (η^2 -styrene) $Fe(CO)_4$ was used in place of 2 is ambiguous in this regard since the path of equation 2 or 3 might obtain. The insolubility of 2 and the lack of reactivity of the more soluble dimers 3 and 4 have precluded detailed mechanistic studies.

$$(CO)_{4}Fe- + RCOC1 \xrightarrow{Ph} RCFe (CO)_{4}C1 \xrightarrow{(CO)_{4}Fe-} RCFe_{2} (CO)_{8}C1] \xrightarrow{RCOC1} RCR (2)$$

$$2 \operatorname{RCFe}(CO)_{4}C1 \longrightarrow (\operatorname{RC})_{2}\operatorname{Fe}(CO)_{4} + \operatorname{Fe}(CO)_{4}C1_{2} \qquad 0 \qquad (3)$$

The fact that nickel(0) effects the dimerization of acid chlorides is not unreasonable for a mononuclear species, since oxidative addition of one equivalent of RCOCl would yield NiL₂Cl(COR), or perhaps NiL₂(COR)₂ by metathesis, and addition of "oxidizing" agents such as alkyl, aryl, or acyl halides to such species is known to induce coupling reactions. ⁸ Preliminary results indicate that Ni(0) complexes may have a wider scope in this reaction than does $\underline{2}$, and this is being further investigated.

Acknowledgement. This work was supported in part by the National Science Foundation Grant CHE 75-1344.

Notes and References

 I. Wender and P. Pino, Eds., "Organic Synthesis via Metal Carbonyls," Vol. 1, Interscience, New York, N.Y., 1968; R.F. Heck, "Organotransition Metal Chemistry," Academic Press, New York, N.Y., 1974; A.P. Kozikowski and H.F. Wetter, <u>Synthesis</u>, 561 (1976); J.P. Collman, <u>Acc. Chem. Res.</u>, <u>8</u> 342 (1975).

- Fe₂(CO)₉ is readily prepared from the relatively inexpensive Fe(CO)₅;
 J.J. Eisch and R.B. King, "Organometallic Synthesis," Vol. 1, Academic Press, New York, N.Y., 1965, p. 93.
- 3. Fe(CO)₅ appears to be the only solvent known in which $Fe_2(CO)_9$ is soluble without reaction. This solubility had no beneficial effect on the yield.
- 4. This type of product was also observed from the reaction of Fe(CO)₅ with ethers and acid chlorides [H. Alper and J.T. Edward, <u>Can. J. Chem.</u>, <u>48</u>, 1623 (1970)], and is a common reactin catalyzed by a variety of Lewis acids [M.E. Synerholm, <u>Org. Syn., Col. Vol. III</u>, E.C. Horning, Ed., Wiley, New York, N.Y., 1955, p. 187.]
- 5. C.W. Bird, "Transition Metal Intermediates in Organic Synthesis," Academic Press, New York, N.Y., 1966, p. 69 ff.
- J.M. Landesberg, I. Katz, and C. Olsen, <u>J. Org. Chem.</u>, <u>37</u>, 930 (1972);
 H. Abbayes and H. Alper, J. Am. Chem. Soc., <u>99</u>, 98 (1977).
- 7. Reaction of CH₃COCl with Fe(CO)₅ at 180° in a sealed steel tube is reported to yield biacetyl in 87% yield; A.S. Filatov and M.A. Englin, <u>J. Gen. Chem. U.S.S.R.</u>, <u>39</u>, 502 (1969). Similarly, CH₃COCl and Ni(CO)₄ yield biacetyl; H. Reihlen, A. Gruhl, and G. Hessling, <u>Ann.</u>, <u>472</u>, 268 (1929).
- 8. S. Takahashi, Y. Suzuki, K. Sonogashira, and N. Hagihara, <u>J. Chem. Soc.</u> Chem. Commun., 839 (1976).